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Abstract. We present a new classification method that uses genetic
programming (GP) to evolve feature transformations for a determinis-
tic, distanced-based classifier. This method, called M4GP, differs from
common approaches to classifier representation in GP in that it does not
enforce arbitrary decision boundaries and it allows individuals to produce
multiple outputs via a stack-based GP system. In comparison to typical
methods of classification, MAGP can be advantageous in its ability to
produce readable models. We conduct a comprehensive study of M4GP,
first in comparison to other GP classifiers, and then in comparison to six
common machine learning classifiers. We conduct full hyper-parameter
optimization for all of the methods on a suite of 16 biomedical data sets,
ranging in size and difficulty. The results indicate that M4GP outper-
forms other GP methods for classification. MAGP performs competitively
with other machine learning methods in terms of the accuracy of the
produced models for most problems. M4GP also exhibits the ability to
detect epistatic interactions better than the other methods.
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1 Introduction

Classification models are a fundamental pursuit in the biomedical field due to
their widespread utility in applications such as medical diagnosis [23,29,39] and
identification of genetic causes of disease [25,26]. In classification with numeric
attributes, we wish to find a mapping §(x) : R? — C that associates the vector of
attributes x € RP with class labels from the set C = {¢1 ... ¢} using n paired
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examples from the training set 7 = {(x;,v:;),¢ = 1 ... n}. Central to this
goal is the identification of important transformations of the original data that
improve classification accuracy. Machine learning (ML) systems that conduct
classification have become standardized over the last 20 years [2], and open-
source packages are available for performing classification (e.g., [8,30]) according
to well-known approaches such as logistic regression (LR), nearest centroid (NC),
support vector classification (SVC), Bayesian Networks (e.g. naive Bayes (NB)),
k-nearest neighbors (KNN), and ensemble methods such as random forests (RF),
among others. Yet three major challenges to multiclass classification persist.
The first two challenges are i) the selection of and ii) transformation of features
into new features (feature synthesis), derived from the original attributes, to be
used for model construction. Feature selection is important for reducing large-
dimension data sets and for measurement selection in some domains. Typically it
is left to a pre-processing step to reduce the number of attributes to a manageable
size [7]; in other words, feature selection is not an intrinsic property of most
ML approaches. Regarding the second challenge, many ML methods employ
projection of the original features into a new feature space, for example via kernel
functions [28]. However the choice of kernel function is typically not automated,
but picked by trial and error or cross-validation. The opaque nature of kernel
transformations highlights a third challenge of classification: the interpretability
of the resultant models. Interpretation is especially relevant in the sciences and
for applications like human genomics that rely on classification as a means of
inferring relationships from observations. To this end, methods with intelligible
representations like decision trees use greedy simplification procedures, while
acknowledging that finding a minimal decision tree is an NP-hard problem [33].

Genetic programming (GP) [14] has been proposed for classification to rem-
edy the three challenges above [5,13]. GP is a stochastic optimization method
that implicitly conducts feature selection by pressuring the model §(x) to use a
subset of x most relevant to the problem solution. In addition, GP makes mini-
mal a priori assumptions about the structure of the attribute space [17], admits
a number of representations [21], and can be made to optimize the structure of
the model such that it remains intelligible. Although it has been applied suc-
cessfully to a number of binary classification problems [39], until recently [11,27]
it has not been competitive with standard multiclass classification techniques.
The exceptions are the recently developed methods M2GP [11] and M3GP [27]
that use GP to select and synthesize features and then perform classification
in the new feature space using a Mahalanobis distance-based discriminant func-
tion. In this paper, we improve upon these methods by two innovations: (i) the
use of a novel program representation that simplifies the construction of mul-
tidimensional representations, and (ii) the incorporation of an advanced parent
selection technique that leads to more accurate classifiers. The performance of
this method, appropriately named M4GP', is compared to other GP represen-
tations, including M2GP, M3GP, using a set of eight benchmark classification
problems. Then, M4GP is benchmarked against LR, NC, SVC, NB, KNN and
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RF on a 16 biomedical classification problems. The experiments include a hyper-
parameter optimization step for each learner, such that the comparisons consider
a tuned version of each method.

2 M4GP

Recall the labeled training set 7 = {(x;,y;),% = 1 ... n}, consisting of n samples
of attributes x; € RP associated with the corresponding class label y; from the
set C ={c1 ... cx}. The n x p matrix of attribute samples X can be partitioned
according to its labels into k subsets {X; ... X}, such that X; is the subset
of X tagged with class label ¢;. One way to classify a new sample x’ € R? is by
finding its nearest centroid [36], i.e. to measure the distance of x’ to each subset
{X; ... X}, and then assign the class label corresponding to the minimum
distance [12], i.e.

9(x') =¢;, if j= argm}nD(X',Xg), b=1,....k (1)

One such measure is the Mahalanobis distance, Dy,

Dar(x,X;) = /(' — 1) 357 (< — )" (2)

where p; € RP is the centroid of X; and X; € RP*P is its covariance matrix,
rendering Djs the equivalent Euclidean distance of x’ from X, scaled by the
eigenvalues (variances) and rotated by the eigenvectors of 3;, to account for the
correlation between columns of X;.

This approach to classification makes some assumptions about the structure
of the data. First, each X; must be sufficiently grouped such that samples always
fall closest to their true distribution, which cannot be said of most difficult
classification problems. Second, it assumes that Eq. (2) can be calculated from
the original data. One can imagine that as the dimensionality of X increases,
the calculation of Dj; becomes prohibitively expensive.

In order to relax these assumptions, we wish to find a set of transformations
@(x) : R? — R? that projects x into a d-dimensional space in which the samples
are more easily classified according to their distribution distances. In this new
space, the Mahalanobis distance takes the form Dy (®(x), #(X;)), with centroid
U, € R? and covariance matrix g, € Raxd,

The goal of the GP system will be to find or approximate the optimal synthe-
sized features @* = [¢1 ... ¢g4] that maximize the number of correctly classified
training samples, as:

@ () = argmax f (,7) Q
F@.7) = -3 5 (9(x1), ) @

i=1
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where S is the space of possible transformations @, f is the classification accuracy
(used here as the GP fitness function), and § = 1 if §(P(x;)) = i, and 0
otherwise. A well-formed ®(x) allows the classifier the flexibility to incorporate
(linear and/or nonlinear) transformations of the original attributes in order to
improve distinctions between classes compared to using the original attribute
set. By using GP to estimate the features @(x), the subset of x used in P(x)
as well as the dimensionality of @, |®| = d, are optimized. Therefore, feature
selection in GP can produce d << p for high dimensional data sets, making
Eq. (2) tractable, and also admits higher-dimensional representations (d > p) in
cases for which x is not easily mapped to y.

2.1 Genetic Programming

GP solves problems by constructing and updating a population of programs
composed of building blocks that represent solution components. In this case,
each program consists of a set of equations that compose the synthesized features
&(x) used to estimate §. For example, an individual program i might encode the
features

i— @(X) = [1'1, Z2, CE%, l’g, xlx?] (5)

where ¢1 = x1, ¢2 = xa, ¢p5 = X122, and so on. In this case, |P| = 5, and i
corresponds to a polynomial expansion of two attributes.

Traditionally in GP, a program is represented by a single syntax tree evalu-
ated based on the output generated at the root node [14]. For example, ¢5 above
could be represented by a tree (x z1 x2), where ‘«’ is the root node and z; and
x4 are its leaves. However, a single output cannot represent a multi-dimensional
transformation. To address this, in M2GP and M3GP, program trees were mod-
ified with special nodes in order to allow for multiple outputs at the root [11,27].
This introduced unnecessary complexity to the representation. A contribution of
this work is the introduction of a stack-based data flow to simplify the encoding
of @, presented in the Representation paragraph below.

The GP population is optimized by probabilistically selecting programs based
on their performance and stochastically recombining and mutating these pro-
grams to produce a new set of programs. In this work, we implement a recent
selection mechanism known as lexicase selection [35] and compare its perfor-
mance to a more traditional selection algorithm (tournament selection). These
techniques are described in the following sections.

Representation. We implement a stack-based representation [15,31] of the
equations in place of the more traditional tree-based GP representations. Pro-
grams in this representation are encoded as post-fix notation equations, e.g.,
i=[21 29 4+] — @ = [x1 + x2]. This representation is advantageous because it
allows multiple outputs to be supported by default without the need for special-
ized instructions. This support is achieved by evaluating programs via executions
on a stack, such that the program in Eq. (5) can be constructed as

i= 21 2221 T1 * Tg Tg * T To * |
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The execution of program i is illustrated in Fig. 1. Rather than recursively eval-
uating the program as a tree starting at its root node, stack based evaluation
proceeds left to right, pushing and pulling instructions to and from a single
stack. Arguments such as x; are pushed to the stack, and operators such as ‘x’
pull arguments from the stack and push the result. At the end of a program’s
execution, the entire stack represents the multi-dimensional transformation.

i= [z1 22 o a1 * Xy Xy * XL Xy *]
index: 1 2 3 4 5 6 7 8 9 10 11
program execution stack
1. push (z1): [z1]
2. push (z2): [z1 z2]
3. push (zy): [z1 z2 2]
4. push (z1): [#1 @2 1 1]
5. pull (z1), (1); push (1 - 21) [z1 @2 @121 ]
6. push (z3): [z1 x2 2} 2]
7. push (z2): [21 @2 2} zo 2]
8. pull (22), (22); push (z3 - x2) [w1 xp a2} 23]
9. push (z1): [z1 22 2] 2§ @]
10. push (z3): [z1 22 23 2} =1 2]
11. pull (z1), (22); push (z1 - z2) [21 z2 2} 23 z122]

= ®&(x) = [21, 22, 1’%7 !L‘S, 2]

Fig. 1. Example of program representation of a multidimensional transformation.
Arguments such as 1 are pushed to the stack, and operators such as ‘x’ pull arguments
from the stack and push the result.

2.2 Other GP Classification Methods

In the case of M4GP, the mean and covariance of the stack outputs are used
in order to make classifications for each sample according to the Mahalanobis
distance (Eq.2). However, a much simpler approach to classification could be
to directly classify samples based on these outputs. This is the case with many
GP-based classifiers [5]. To this end, we compare distance-based classification
with two simpler alternatives: float stack classification and boolean stack classi-
fication, referred to simply as float and bool hereafter.

In the case of float, we take the index of the floating point stack with the
highest value to be the class assignment. For example, assume the program from
Fig. 1 produces the output [0.15, 2.31, 42, 6.3, 0.01] for a sample from the data.
In this case the GP model would assign the 3rd class label to this sample. Thus
the GP system attempts to evolve a set of equations that are maximized for the
class label corresponding to their location in the program.

In the case of bool, we include a set of boolean operators in the func-
tion set for constructing GP programs: {AND, OR, NOT, <, >, <=, >=, ==,
IF-THEN, IF-THEN-ELSE}. Boolean outputs are pushed to their own typed stack.
In order to make a classification, the boolean stack is interpreted as a bit string.
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For example, in the case of 2 classes, the top value of the boolean stack is inter-
preted as class 1 ([0]) or class 2 ([1]). For binary classification problems, this
corresponds to a fairly traditional encoding for classification [32]. In the case of
4 classes, the top two values of the stack are interpreted as class 1 ([0, 0]), class
2 ([0, 1]), class 3 ([1, 0]), or class 4 ([1, 1]).

Initialization, Selection, and Variation. Programs are initialized as sets
of equations varying both in individual feature size and their dimensionality.
Each equation in a program is initialized recursively in an analogous fashion to
the grow method (see [32]) but limited by number of nodes rather than depth.
Fitness for the programs is defined in Eq. (4).

Two population selection methods are tested: tournament selection [6] and
lexicase selection [9,35]. The first, tournament selection, is a standard GP
method in which individuals (in this case, two) in the current population are
randomly selected (with replacement) and the one with best fitness is chosen as
a parent for the next generation. Lexicase selection is described in more detail
below.

Lezicase selection. Lexicase selection is a parent selection technique that pres-
sures individuals in the population to perform well on unique combinations of
training cases, i.e. samples. Each parent selection event follows this procedure:

1. The entire population is added to the selection pool.

2. The training cases are uniformly shuffled.

3. Individuals in the pool that do not have ezactly the best fitness on the first
case among the pool are removed.

4. If more than one individual remains in the pool, the first case is removed and
step 2 is repeated with the next case. If only one individual remains, it is the
chosen parent. If no more fitness cases are left, a parent is chosen randomly
from the remaining individuals.

As can be surmised, the lexicase selection is simple to implement. It is helpful to
think of the training cases as filters, and to consider each parent selection event
as a randomized path through these filters. The parents returned by lexicase
selection are Pareto-optimal with respect to the training cases, since they must be
elite on at least one case to be selected. In turn, the selective strength of a training
case is directly proportional to its difficulty because it culls the individuals from
the pool that do not solve it. Therefore selective pressure shifts to cases that
are not widely solved. This interaction between individuals in the pool and the
training cases results in selective pressure to perform well on unique combinations
of test cases. As a result, lexicase selection leads to increased population diversity
observed during evolutionary runs [9,16].

3 Related Work

Whereas GP has been proposed for evolving classification functions §(x)
directly [5,13,21], M2GP proposed GP as a wrapper that evolved @(x) for a
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clustering method, and demonstrated in particular that Mahalanobis distance
outperformed Euclidean distance in this framework [11]. M3GP extended M2GP
to allow programs to change dimensionality during the run via specialized search
operators that increased or decreased the dimensionality of a tree by modifying
its root node [27]. M4GP removes the need for explicit root nodes by using a
stack-based data flow that also preserves multi-dimensionality and allows dimen-
sionality to change flexibly. An ensemble version of M3GP named eM3GP pro-
duced similar classification accuracies to M3GP with smaller, more legible resul-
tant programs [34]. Together, these methods highlight the unique challenge of
feature selection and its merger into learning systems [19].

A few recently developed ML methods have leveraged GP’s feature-based
abilities as a wrapper for regression [1,10,22]. MAGP and its ancestors differ
from these regression-based approaches in that the classification does not require
classes to be assigned via an arbitrarily designated range of real-valued outputs,
but instead utilizes a distance metric to infer the boundaries of the transformed
feature space. MAGP also incorporates a novel GP representation and advanced
selection methods to improve its performance.

GP has also been proposed to fill various roles in tailored learning systems
for image classification. It has been used, for example, as a way to learn image
embeddings for an ensemble method [20], as an interactive learning tool for
remote sensing [4], and as a binary classifier in a pulmonary nodule detection
system [3]. Liu [20] noted the potential for GP to perform dimensionality reduc-
tion efficiently in large-scale settings, as we noted earlier. MA4GP differs from
these approaches in two ways: first, it focuses on the capacity for low- and high-
dimensionality feature extraction to flexibly suit the needs of the problem, and
second, it applies to general multiclass classification problems.

4 Experimental Analysis

The experimental section consists of two parts. First, we compared M4GP to
other GP methods, including bool and float methods described above, M2GP,
and M3GP. Second, we compared M4GP to off-the-shelf methods on a set of
biomedical data sets using a full hyper-parameter optimization strategy.

The settings for the first set of experiments are shown in Table 1. The settings
for the methods match those used in the M2GP and M3GP papers, with the
exception of program size limits (specified in numbers of elements rather than
tree depth) and initial dimensionality range. The same set of problems from
the original papers are used for these experiments to facilitate the comparison.
Six of the eight problems used for comparing the GP methods are from the
UCIT data repository [18] and are summarized in Table 1. Two others, med3 and
mcd10, are satellite data sets from [38]. Two versions of MAGP are tested: MAGP
with lexicase selection (M4GP-Ix), and tournament selection (M4GP-tn). Each
method is run for 30 trials, and for each trial the data is randomly partitioned
into 70% training and 30% testing.

The second set of experiments are designed to compare M4GP to six common
classification methods available in Scikit Learn [30]: NB, LR, KNN, SVC, RF
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and NC. NC uses the classification strategy of Eq.1, and therefore provides a
comparison for MAGP against using the raw feature representation with the same
discriminant function. For each method, hyper-parameter optimization is con-
ducted on the training set using 5-fold cross-validation. In order to enforce some
balance in the hyper-parameter optimization step, each method is restricted to
50 parameter combinations. We report and compare classification accuracy on
the test set. The experimental design is summarized in Table 2.

For this comparison, 16 biomedical data sets are used, varying from 2 to
4 classes, 88 to 3772 samples, and 7 to 1000 features. 10 of the 16 prob-
lems are open-source, real-world data sets available from the OpenML repos-
itory [40]. They consist of different biomedical tasks such as medical diagnosis,
post-operative decision making, and identification of exon boundaries in DNA.
Six synthetic problems generated using GAMETES [37], are included. These
problems embed 2- and 3-way epistatic interactions (i.e. non-additive interaction
among genes) within noisy data sets with 20 or 1000 attributes. The goal of this
problem is to test the ability of ML algorithms to identify these types of interac-
tions common in genome-wide association studies [24]. Two of the GAMETES
problems also test heterogeneity by embedding two separate, semi-overlapping
epistatic interactions into the data.

Table 1. Experimental setup for the comparison of GP methods.

Setting Value
Population size 500
Max Generations 100
Crossover / Mutation 50/50%
Ephemeral random constants [14] range [0,1]
Program size limits by # nodes [3, 100]
Initial dimensionality range (d) [1,33]
Termination criterion generations or perfect training accuracy
Trials 30
Train/test split 70/30
Data Set  heart mcd3 mcdl0 movl seg vowel wav yeast
Classes 2 3 10 15 7 11 3 10
Attributes 13 6 6 90 19 13 40 8
Samples 270 322 6798 360 2310 990 5000 7797
5 Results

The results of the comparison of GP methods is first discussed in Sect.5.1,
followed by the comparison of several ML methods on the biomedical data sets
in Sect. 5.2.

5.1 Comparison to Other GP Methods

As a first point of comparison, we analyze the choice of GP classification method
(bool, float or distance) based on the test accuracy for the first set of problems
in Fig. 2. The distance-based classification method, i.e. MAGP, outperforms the
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Table 2. Experimental setup for the biomedical problems. The hyper-parameters that
were searched are shown on the right. Below the biomedical data sets are listed. GMT
stands for GAMETES data sets, which are named according to number of epistatic
loci (w), number of attributes (a), noise fraction (n), and heterogeneity fraction (h).

Method hyper-parameters
Population size (100, 250, 500); generations (10,50,100);

M4GP selection method (tournament, lexicase); max length (10,
50, 100)

Gaussian Naive Bayes none

Regularization coefficient (0.1,...,20); penalty (£1,02); fit
intercept (True, False); dual formulation (True, False)
Regularization coefficient (0.01,1,100,‘auto’); v (0.01, 10,
Support Vector Classifier 1000, ‘auto’); kernel (linear, RBF); decision function shape
(‘ovo’,‘ovr’)

No. estimators (10, 100, 1000); minimum weight fraction

Logistic Regression

Random Forest Classifier for leaf (0.0, 0.25, 0.5); max features (sqrt, log2, None);

splitting criterion (entropy, gini)
K-Nearest Neighbor Classifier K (1,2,...,25); weights (uniform, distance)
Nearest Centroid Classifier distance metric (Euclidean, Mahalanobis)

Training and Test Methodology

Hyper-parameter optimization 5-fold cross-validation
Train/Test split 50/50
Trials 30
Score Accuracy
Data Set Classes Samples Dimensions
allbp 3 3772 29
allhyper 4 3771 29
allhypo 3 3770 29
biomed 2 209 8
breast-cancer-wisconsin 2 569 30
breast-cancer 2 286 9
diabetes 2 768 8
dna 3 3186 180
GMT 2w-20a-0.1n 2 1600 20
GMT 2w-20a-0.4n 2 1600 20
GMT 3w-20a-0.2n 2 1600 20
GMT 2w-1000a-0.4n 2 1600 1000
GMT 2w-20a-0.4n-0.5h 2 1600 20
GMT 2w-20a-0.4n-0.75h 2 1600 20
liver-disorder 2 345 6
postoperative-patient-data 2 88 8

other methods on all problems, 7 out of 8 by a large margin. The distance-based
method also has the advantage of less variability in its performance compared to
the other methods. From these results it is clear that the distance-based classifier
has a distinct advantage over bool and float methods on these problems. This
validates our choice to use M4GP in comparison to other ML methods on the
set of biomedical problems.

As a second point of comparison, we benchmark the results of M4GP to
M2GP and M3GP in Fig. 3. The results of MAGP using lexicase selection and
tournament selection are both displayed. In order to test statistical significance,
pairwise Wilcoxon rank-sum tests are performed with Holm correction for multi-
ple comparisons. We use a significance level of p < 0.01 in the following reporting.
The results indicate that M4GP-tn significantly outperforms M2GP on 4 out of
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8 problems (heart, med3, vowel, and wav), and significantly outperforms than
M3GP on 5 out of 8 problems (heart, mcd3, vowel, wav and movl). M4GP-1x
significantly outperforms M2GP on 5/8 problems and outperforms M3GP on 6/8
problems. Conversely, M3GP does not significantly outperform M4GP-1x on any
problem, and only outperforms M4GP-tn on one problem (mcd10). In addition,
on one problem (movl), M2GP outperforms M3GP, M4GP-tn and M4GP-1x. A
closer look at these runs indicates that most finish within the first few gener-
ations due to perfect training scores, which indicates this problem is likely to
be solved easily by random search. Given that M2GP begins with smaller pro-
grams, it is more likely than M4GP to not over-fit in the first few generations.
In summary, M4GP-Ix is able to produce significantly better results for most
problems, and in other cases produce results on par with the previous methods.

The choice of selection method results in mixed performance for M4GP.
MA4GP-Ix significantly outperforms M4GP-tn on two problems, whereas M4GP-
tn outperforms M4GP-Ix on one problem, meaning the selection mechanism in
MA4GP is problem dependent. Because the selection method is kept as a hyper-
parameter for the biomedical data sets, the optimization procedure is able to
test both selection methods in the subsequent set of experiments.

heart mcd10 mcd3
1.004
S B —

0.75+ $ * g *

* i f——

0.254
5‘ movl seg vowel
E 1.004 + —_—
8 0.75+4 * %
s}
S [ = ==
“qw: 0.254 $ T ————— ee—
= wav yeast

1.004

0.751 —— E3 bool

| =S e B float
050 —— I B3 distance
0.254
N X @ \ . <
‘000 ,\\0’6 6\5\@(\ \000 ,\\0'3 6\‘5\'@(\

Fig. 2. Test accuracies for each GP classification method on the set of UCI and satellite
problems. The distance method corresponds to the M4GP algorithm. The subplot title
indicates the dataset being shown.

5.2 Comparison to Other ML Methods

The results of the ML comparisons on the biomedical problems are compared
in Fig. 4. Classification accuracy on the test set for 30 trials is plotted. The sta-
tistical significance of the results is analyzed in Table 3 according to Wilcoxon
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Fig. 3. Test accuracies for each Mahalanobis distance-based GP method on the set of
UCI and satellite problems. The subplot title indicates the dataset being shown.

rank-sum tests of M4GP versus each method with correction for multiple com-
parisons. The results reveal that different algorithms excel with different prob-
lems. In total, MAGP outperforms other methods in 39 pair-wise comparisons,
and is outperformed in 26. M4GP most often outperforms NC (significantly on
9/16 problems), which is an intuitive result considering the feature transforma-
tions generated by M4GP are evolved to perform well with a nearest centroid
classification strategy. M4GP also outperforms NB in most cases (9/16 prob-
lems), although NB surpasses it in 2 cases. Conversely, RF and SVC both out-
perform M4GP on 7/16 of the problems, and are outperformed by M4GP on 5.

The GAMETES problems produce an interesting set of results and perhaps
the most variability in test accuracy among the methods. These problems are
the only ones for which M4GP outperforms all other methods with strong sig-
nificance. Given that the GAMETES data sets are designed specifically to test
epistasis, this result suggests MAGP may be able to identify this phenomena with
more certainty than the other methods tested here. The relatively poor perfor-
mance of most of the other tested methods is explained by their reliance on the
identification of univariate correlations of the raw features with the class labels.
The GAMETES data sets we tested are void of these so-called main effects,
instead requiring the method to detect epistasis in the data set to produce accu-
rate classifiers. MAGP is naturally suited for this task due to its capacity for
nonlinear, multi-variate feature transformations.
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Fig. 4. Test accuracies for each method on the set of biomedical problems. The subplot
title indicates the dataset being shown.
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Table 3. Significance tests (p < 0.01) for the biomedical problems in comparison
to M4GP. Wilcoxon rank-sum tests with Holm correction are conducted on the test
accuracy results. Highlighted results are problems for which M4GP significantly out-
performed the other method. Underlined results are those for which M4GP was signif-
icantly outperformed by that method.

NB LR KNN SVC RF NC
allbp 6.06e-10 0.000239 0.122 0.000659 1.19e-09 1.84e-09
allhyper 6.1e-10 0.127  0.0217 0.127 2.45e-09 5.14e-09
allhypo 6.05e-10 6.05e-10 0.000664 6.05e-10 6.05¢-10 6.05e-10
biomed 0.0355 0.348 1 0.1 0.00475 1
breast-cancer 0.0123  0.0587 0.00214 0.0103 1 1
breast-cancer-wisconsin 0.0656 7.04e-07 0.0656 1.95e-05 0.231 0.012
diabetes 0.463 2.23e-06 1 3.39e-06 0.0192 1
dna 1.23e-05 6.13e-10 6.13e-10 6.13e-10 6.13e-10 1.13e-07
GMT 2w-1000a-0.4n 1 1 1 1 1 0.236
GMT 2w-20a-0.1n 2.2e-08 1.93e-08 7.77e-07 7.43e-07 9.06e-07 1.46e-08
GMT 2w-20a-0.4n 6.2e-10 6.2e-10 6.2e-10 6.2e-10 6.2e-10 6.2e-10
GMT 3w-20a-0.2n 5.31e-05 2.49e-05 0.000512 7.21e-05 0.00439 6.47e-05
GMT 2w-20a-0.4n-0.5h 4.3e-09 4.3e-09 4.3e-09 7.76e-08 4.04e-08 3.62e-09
GMT 2w-20a-0.4n-0.75h 1.76e-09 1.76e-09 4.74e-08 5.06e-08 6.51e-08 1.76e-09
liver-disorder 2.59e-06 0.000428 1 3.77e-06 0.000122 1
postoperative-patient-data 0.0016 6.65e-10 2.34e-07 6.65e-10 7.24e-09 1

6 Discussion and Conclusion

The results suggest that GP methods paired with distance-based classification
can be more effective on many classification problems than typical GP classifi-
cation strategies. Across a set of real-world problems, the proposed M4GP algo-
rithm is able to outperform other GP methods, including previously developed
distance-based classification strategies. Key to this improvement with respect
to M2GP and M3GP is the use of a stack-based representation that facilitates
multidimensional feature transformations, as well as the use of lexicase selection
as a parent selection strategy.

M4GP is demonstrated in a robust comparison to other ML methods by
conducting a full hyper-parameter optimization routine across 16 biomedical
data sets. The results suggest that M4AGP is competitive with other ML tools,
especially in detecting epistasis. The GAMETES results motivate further interest
into the application of MAGP to problems for which epistasis might be present.
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